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A sterically locked biliverdin derivative was synthesized by
developing an efficient method for the preparation of Z-anti C/
D-ring component toward investigation of the stereochemistry
and function of the phytochrome chromophores.

Phytochromes are biliprotein photoreceptors that play an es-
sential role in the various phases of plant development and
growth. The recent discovery of phytochrome-related proteins
in photosynthetic cyanobacteria and nonphotosynthetic eubacte-
ria has opened new avenues for investigating biliprotein photo-
sensory function.1 Plant phytochromes carry either phytochro-
mobilin (P�B) or phycocyanobilin (PCB) as chromophore
which binds covalently to the protein by a thioether bond
through the A-ring ethylidene side chain, and respond to red/
far-red light which interchanges between Z- and E-forms at C-
15 position of the chromophores. This double-bond photoisome-
rization converts the physiologically inactive red-light absorbing
Pr form into the active far red-light absorbing Pfr form and vise
versa. We have been studying on the syntheses of phycobilin de-
rivatives,2 and succeeded in synthesizing P�B,2d PCB,2b,c and
modified PCBs2e,f in free acid forms, which made it possible
to assemble the chromophores with the apoproteins not only in
vitro to analyze the spectral properties of the resulting holopro-
teins,3 but also in vivo to observe their physiological functions.4

On the other hand, it was found that some bacterial phyto-
chromes carry biliverdin (BV) as natural chromophore. Recent-
ly, we reported that BV binds covalently to Agrobacterium phy-
tochrome Agp1 via its A-ring vinyl side chain.5 Herein, we at-
tempted to construct the sterically fixed BV derivative 1 bearing
the Z-anti C/D-ring component according to the retrosynthetic
analysis shown in Figure 1 toward investigation of the stereo-
chemistry and function of phytochrome chromophores.

We have reported the total synthesis of P�B starting from
4-methyl-3-[2-(p-tolylthio)ethyl]-2-tosylpyrrole as a precursor
of the A- and D-rings and a 2-formylpyrrole common to the
B- and C-rings.2d In order to construct the BV derivative, we ap-
plied this procedure to prepare the A/B-ring component 3 bear-
ing a vinyl group at A-ring as shown in Scheme 1. Pyrromethe-
none derivative 7 carrying the p-tolylthioethyl side chain was
converted to the corresponding sulfoxide by treating with
mCPBA in CH2Cl2, followed by treating with a mixture of for-
mic acid and trifluoroacetic acid (TFA) at 5 �C to afford the pyr-
romethenone derivative 8a and/or its decarboxylated form 8b.
Subsequent reflux in DMF in the presence of pyridine afforded
the desired A/B-ring component 3 in 57% yield in three steps.
This compound 3 is also available by treating BV diallyl ester
with thiobarbituric acid.6

The C/D-ring component 4 was prepared from D-ring 5,
which was already available according to our previous method,7

and the C-ring 6 carrying a good leaving group to afford the cy-
clized product. Commercially available 3-bromo-1-propanol (9)
was first acetylated followed by nitration reaction using sodium
nitrite in the presence of phloroglucinol in DMF to give 3-nitro-
propyl acetate (10) in 60% yield. Compound 10 was coupled
with an oxo-ester in a similar manner for our preparation of
the B- and C-rings,2a,e followed by acetylation of the resulting
alcohol to give the nitro acetate 11 in 66% yield. When com-
pound 11 was treated with t-butyl isocyanoacetate and DBU ac-
cording to Barton’s method8 in acetonitrile, the pyrrole deriva-
tive 12 was obtained in 55% yield. Saponification of 12 with
KOH, followed by allyl esterification using allyl bromide in
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Scheme 1. a) mCPBA (1.0 equiv.) in CH2Cl2, 0
�C, 15min. b)

Formic acid/TFA (2/1, v/v), 5 �C, 1 h. Crude mixture of 8a, 8b
was used for the next step without isolation. c) Pyridine
(10.0 equiv.) in DMF, reflux, 2 h. 3, 57% from 7.
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the presence of DBU in THF/DMF gave the pyrrole 13 in 60%
yield. When formylation of 13 by the Vilsmeier reaction was
attempted to give the formylated product in situ, chlorination
of the hydroxy group proceeded simultaneously to afford the
formylpyrrole 6 bearing a good leaving group in 94% yield.

Our original Wittig-type coupling reaction between tosyl
pyrrolinone 5 and formylpyrrole 6 proceeded satisfactorily using
tri(n-butyl)phosphine in the presence of DBU in THF at 0 �C–rt
to afford the C/D-ring component 14a, 14b in 98% yield. We
found that the E-isomer of C/D-ring component 14a should be
converted to the Z-isomer 14b prior to the cyclization by treating
with a catalytic amount of iodine in methylene chloride. The
Z-form 14b was easily cyclized in the presence of DBU in
THF at 50 �C affording the desired cyclized product 15 in 76%
yield. Subsequent formylation was accomplished by treating
with trimethyl orthoformate in TFA at 0 �C–rt for 1 h to give
the formylated C/D-ring component 4 in quantitative yield.9

The coupling reaction between the C/D- and A/B-ring

components, 4 and 3, was carried out under acidic conditions
to afford the sterically fixed BV diallyl ester derivative 2 in
87% yield.

Finally, the deprotection of the allyl ester was achieved
by Pd(0)-catalyzed reaction2b,d using sodium p-toluenesulfinate
as a nucleophile instead of morpholine, which has been used
in our previous method, in THF/MeOH to give the desired
chromophore 1 in 90% yield.10

It can be expected that such sterically fixed chromophores
will open the new avenues for investigation of the stereochemis-
try and function of phytochrome chromophores both in vitro and
in vivo in near future.11

The present work was financially supported in part by Grant-
in-Aid for Scientific Research from the Ministry of Education,
Culture, Sports, Science and Technology.
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Scheme 2. a) Ac2O (1.1 equiv.), DMAP (0.2 equiv.) in THF,
0 �C–rt, 3 h. b) NaNO2 (2.0 equiv.), phloroglucinol dihydrate
(1.1 equiv.) in DMF, rt, overnight. 10, 60% from 9. c)
CH3O2CCH2CH2CHO (1.0 equiv.), KOH (0.2 equiv.) in MeOH,
0 �C–rt, overnight. d) Ac2O (1.1 equiv.), DMAP (0.2 equiv.) in
THF, 0 �C–rt, 4 h. 11, 66% from 10. e) CNCH2CO2t-Bu
(1.0 equiv.), DBU (2.2 equiv.) in MeCN, �40 �C–rt, 6 h. 12,
55%. f) KOH (5.0 equiv.) in MeOH, 0 �C, 2 h. g) AllylBr
(1.1 equiv.), DBU (1.0 equiv.) in THF/DMF (2/1, v/v), 0 �C–rt,
1.5 h. 13, 60% from 12. h) POCl3 (2.5 equiv.) in DMF, 80 �C,
2 h, then aq 10% NaOAc. 6, 94%.
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Scheme 3. a) n-Bu3P (2.5 equiv.), DBU (1.5 equiv.) in THF,
0 �C–rt, 4 h. 14a, 84%; 14b, 14%. b) cat. I2 in CH2Cl2, rt, 24 h.
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